Integration of LiDAR and Landsat Data to Estimate Forest Canopy Cover in Coastal British Columbia
نویسندگان
چکیده
Disclaimer: The PDF document is a copy of the final version of this manuscript that was subsequently accepted by the journal for publication. The paper has been through peer review, but it has not been subject to any additional copy-editing or journal specific formatting (so will look different from the final version of record, which may be accessed following the DOI above depending on your access situation). Abstract Airborne Light Detection and Ranging (LiDAR) data provide useful measurements of forest canopy structure but are often limited in spatial coverage. Satellite remote sensing data from Landsat can provide extensive spatial coverage of generalized forest information. A forest survey approach that integrates airborne LiDAR and satellite data would potentially capitalize upon these distinctive characteristics. In this study in coastal forests of British Columbia, the main objective was to determine the potential of Landsat imagery to accurately estimate forest canopy cover measured from small-footprint airborne LiDAR data in order to expand the LiDAR measurements to a larger area. Landsat-derived Tasseled Cap Angle (TCA) and spectral mixture analysis (SMA) endmember fractions (i.e. sunlit canopy, non-photosynthetic vegetation (NPV), shade and exposed soil) were compared to LiDAR-derived canopy cover estimates. Pixel-based analysis and object-based area-weighted error calculations were used to assess regression model performance. The best canopy cover estimate was obtained (in the object-based deciduous forest models) with a mean object size (MOS) of 2.5 hectares (adjusted R 2 = 0.86 and RMSE = 0.28). Overall, lower canopy cover estimation accuracy was obtained for coniferous forests compared to deciduous forests in both the pixel and object-based approaches.
منابع مشابه
Extrapolating Forest Canopy Fuel Properties in the California Rim Fire by Combining Airborne LiDAR and Landsat OLI Data
Accurate, spatially explicit information about forest canopy fuel properties is essential for ecosystem management strategies for reducing the severity of forest fires. Airborne LiDAR technology has demonstrated its ability to accurately map canopy fuels. However, its geographical and temporal coverage is limited, thus making it difficult to characterize fuel properties over large regions befor...
متن کاملCalibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone
Monitoring current forest characteristics in the taiga ́tundra ecotone (TTE) at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal for...
متن کاملEstimating vegetation height and canopy cover from remotely sensed data with machine learning
6 High quality information on forest resources is important to forest ecosystem management. Tra7 ditional ground measurements are labor and resource intensive and at the same time expensive 8 and time consuming. For most of the Slovenian forests, there is extensive ground-based infor9 mation on forest properties of selected sample locations. However there is no continuous infor10 mation of obje...
متن کاملIntegration of Lidar and Landsat Etm+ Data
Lidar data provide accurate measurements of forest canopy structure in the vertical plane however current lidar sensors have limited coverage in the horizontal plane. Landsat data provide extensive coverage of generalized forest structural classes in the horizontal plane but are relatively insensitive to variation in forest canopy height. It would therefore be desirable to integrate lidar and L...
متن کاملIntroducing the improved Forest Canopy density (FCD) model for frequent assessment of Hyrcanian forest
Mapping of forest extent is a prerequisite to acquire quantitative and qualitative information about forests and to formulate management and conservation strategies. forest canopy density (FCD) model is one of the useful RS methods for forest mapping using satellite images. One of the most serious challenges in FCD model is the weakness in the calculation of canopy density in low density forest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014